Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633814

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

2.
Front Immunol ; 15: 1369295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650940

RESUMO

Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods: This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results: Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion: Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.


Assuntos
Citocinas , Índice de Gravidade de Doença , Humanos , Citocinas/metabolismo , Feminino , Adulto , Masculino
3.
Theranostics ; 14(5): 2167-2189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505617

RESUMO

Rationale: Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process. Methods: We assessed primary tumor invasion, postsurgical local recurrence and distant metastasis in orthotopic syngeneic mice given the indicated immunotherapy and MCT-1 silencing (shMCT-1). Results: We found that shMCT-1 suppresses the transcriptomes of the inflammatory response and metastatic signaling in TNBC cells and inhibits tumor recurrence, metastasis and mortality in xenograft mice. IL-6R immunotherapy and shMCT-1 combined further decreased intratumoral M2 macrophages and T regulatory cells (Tregs) and avoided postsurgical TNBC expansion. shMCT-1 also enhances IL-6R-based immunotherapy effectively in preventing postsurgical TNBC metastasis, recurrence and mortality. Anti-IL-6R improved helper T, cytotoxic T and natural killer (NK) cells in the lymphatic system and decreased Tregs in the recurrent and metastatic tumors. Combined IL-6R and PD-L1 immunotherapies abridged TNBC cell stemness and M2 macrophage activity to a greater extent than monotherapy. Sequential immunotherapy of PD-L1 and IL-6R demonstrated the best survival outcome and lowest postoperative recurrence and metastasis compared with synchronized therapy, particularly in the shMCT-1 context. Multiple positive feedforward loops of the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 axis were identified in TNBC cells, which boosted metastatic niches and immunosuppressive microenvironments. Clinically, MCT-1high/PD-L1high/CXCL7high and CXCL7high/IL-6high/IL-6Rhigh expression patterns predict worse prognosis and poorer survival of breast cancer patients. Conclusion: Systemic targeting the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 interconnections enhances immune surveillance that inhibits the aggressiveness of TNBC.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Interleucina-6/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/prevenção & controle , Imunoterapia , Microambiente Tumoral
4.
Cell Host Microbe ; 32(4): 506-526.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479397

RESUMO

To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.


Assuntos
Estabilidade Central , Microbiota , Humanos , Pele/microbiologia , Interações entre Hospedeiro e Microrganismos , Biomarcadores
6.
Stress ; 27(1): 2321610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38425100

RESUMO

Despite decades of stress research, there still exist substantial gaps in our understanding of how social, environmental, and biological factors interact and combine with developmental stressor exposures, cognitive appraisals of stressors, and psychosocial coping processes to shape individuals' stress reactivity, health, and disease risk. Relatively new biological profiling approaches, called multi-omics, are helping address these issues by enabling researchers to quantify thousands of molecules from a single blood or tissue sample, thus providing a panoramic snapshot of the molecular processes occurring in an organism from a systems perspective. In this review, we summarize two types of research designs for which multi-omics approaches are best suited, and describe how these approaches can help advance our understanding of stress processes and the development, prevention, and treatment of stress-related pathologies. We first discuss incorporating multi-omics approaches into theory-rich, intensive longitudinal study designs to characterize, in high-resolution, the transition to stress-related multisystem dysfunction and disease throughout development. Next, we discuss how multi-omics approaches should be incorporated into intervention research to better understand the transition from stress-related dysfunction back to health, which can help inform novel precision medicine approaches to managing stress and fostering biopsychosocial resilience. Throughout, we provide concrete recommendations for types of studies that will help advance stress research, and translate multi-omics data into better health and health care.


Assuntos
Multiômica , Estresse Psicológico , Humanos , Estudos Longitudinais , Medicina de Precisão
7.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352363

RESUMO

To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights: The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.

8.
Mol Cell Proteomics ; 23(3): 100731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331191

RESUMO

Proteomics data sharing has profound benefits at the individual level as well as at the community level. While data sharing has increased over the years, mostly due to journal and funding agency requirements, the reluctance of researchers with regard to data sharing is evident as many shares only the bare minimum dataset required to publish an article. In many cases, proper metadata is missing, essentially making the dataset useless. This behavior can be explained by a lack of incentives, insufficient awareness, or a lack of clarity surrounding ethical issues. Through adequate training at research institutes, researchers can realize the benefits associated with data sharing and can accelerate the norm of data sharing for the field of proteomics, as has been the standard in genomics for decades. In this article, we have put together various repository options available for proteomics data. We have also added pros and cons of those repositories to facilitate researchers in selecting the repository most suitable for their data submission. It is also important to note that a few types of proteomics data have the potential to re-identify an individual in certain scenarios. In such cases, extra caution should be taken to remove any personal identifiers before sharing on public repositories. Data sets that will be useless without personal identifiers need to be shared in a controlled access repository so that only authorized researchers can access the data and personal identifiers are kept safe.


Assuntos
Privacidade , Proteômica , Humanos , Genômica , Metadados , Disseminação de Informação
9.
Nat Med ; 30(2): 360-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355974

RESUMO

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Assuntos
Longevidade , Projetos de Pesquisa , Biomarcadores , Consenso
10.
Cell Genom ; 4(2): 100445, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359791

RESUMO

Human induced pluripotent stem cell (iPSC) platforms are valuable for biomedical and pharmaceutical research by providing tissue-specific human cells that retain patients' genetic integrity and display disease phenotypes in a dish. Looking forward, combining iPSC phenotyping platforms with genomic and screening technologies will continue to pave new directions for precision medicine, including genetic prediction, visualization, and treatment of heart disease. This review summarizes the recent use of iPSC technology to unpack the influence of genetic variants in cardiovascular pathology. We focus on various state-of-the-art genomic tools for cardiovascular therapies-including the expansion of genetic toolkits for molecular interrogation, in vitro population studies, and function-based drug screening-and their current applications in patient- and genome-edited iPSC platforms that are heralding new avenues for cardiovascular research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Medicina de Precisão , Coração , Genética Humana
11.
Heliyon ; 10(3): e24975, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317984

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.

12.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410440

RESUMO

The short-chain fatty acids (SCFA) propionate and butyrate are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr/bu and H4K12pr/bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate act as promoters of growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.

13.
Hum Genet ; 143(2): 185-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302665

RESUMO

PURPOSE: Miscarriage, often resulting from a variety of genetic factors, is a common pregnancy outcome. Preconception genetic carrier screening (PGCS) identifies at-risk partners for newborn genetic disorders; however, PGCS panels currently lack miscarriage-related genes. In this study, we evaluated the potential impact of both known and candidate genes on prenatal lethality and the effectiveness of PGCS in diverse populations. METHODS: We analyzed 125,748 human exome sequences and mouse and human gene function databases. Our goals were to identify genes crucial for human fetal survival (lethal genes), to find variants not present in a homozygous state in healthy humans, and to estimate carrier rates of known and candidate lethal genes in various populations and ethnic groups. RESULTS: This study identified 138 genes in which heterozygous lethal variants are present in the general population with a frequency of 0.5% or greater. Screening for these 138 genes could identify 4.6% (in the Finnish population) to 39.8% (in the East Asian population) of couples at risk of miscarriage. This explains the cause of pregnancy loss in approximately 1.1-10% of cases affected by biallelic lethal variants. CONCLUSION: This study has identified a set of genes and variants potentially associated with lethality across different ethnic backgrounds. The variation of these genes across ethnic groups underscores the need for a comprehensive, pan-ethnic PGCS panel that includes genes related to miscarriage.


Assuntos
Aborto Espontâneo , Feminino , Recém-Nascido , Humanos , Gravidez , Animais , Camundongos , Aborto Espontâneo/genética , Genes Letais , Triagem de Portadores Genéticos , Etnicidade , Biologia Computacional
14.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293216

RESUMO

The short-chain fatty acids (SCFA) propionate and butyrate are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr/bu and H4K12pr/bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo . We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate act as promoters of growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.

15.
Annu Rev Med ; 75: 401-415, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37983384

RESUMO

Wearable devices are integrated analytical units equipped with sensitive physical, chemical, and biological sensors capable of noninvasive and continuous monitoring of vital physiological parameters. Recent advances in disciplines including electronics, computation, and material science have resulted in affordable and highly sensitive wearable devices that are routinely used for tracking and managing health and well-being. Combined with longitudinal monitoring of physiological parameters, wearables are poised to transform the early detection, diagnosis, and treatment/management of a range of clinical conditions. Smartwatches are the most commonly used wearable devices and have already demonstrated valuable biomedical potential in detecting clinical conditions such as arrhythmias, Lyme disease, inflammation, and, more recently, COVID-19 infection. Despite significant clinical promise shown in research settings, there remain major hurdles in translating the medical uses of wearables to the clinic. There is a clear need for more effective collaboration among stakeholders, including users, data scientists, clinicians, payers, and governments, to improve device security, user privacy, data standardization, regulatory approval, and clinical validity. This review examines the potential of wearables to offer affordable and reliable measures of physiological status that are on par with FDA-approved specialized medical devices. We briefly examine studies where wearables proved critical for the early detection of acute and chronic clinical conditions with a particular focus on cardiovascular disease, viral infections, and mental health. Finally, we discuss current obstacles to the clinical implementation of wearables and provide perspectives on their potential to deliver increasingly personalized proactive health care across a wide variety of conditions.


Assuntos
Medicina de Precisão , Dispositivos Eletrônicos Vestíveis , Humanos , Atenção à Saúde , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia
16.
Nat Biomed Eng ; 8(1): 11-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36658343

RESUMO

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 µl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.


Assuntos
Multiômica , Biomarcadores
17.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989727

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Dano ao DNA , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
18.
Cell Rep ; 42(11): 113392, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37925638

RESUMO

The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.


Assuntos
Doença de Alzheimer , Células Endoteliais , Camundongos , Adulto , Humanos , Animais , Células Endoteliais/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Multiômica , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fatores de Transcrição/metabolismo
19.
Nat Metab ; 5(9): 1578-1594, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37697054

RESUMO

Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.


Assuntos
Resistência à Insulina , Humanos , Lipidômica , Envelhecimento , Ceramidas , Inflamação
20.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657418

RESUMO

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Assuntos
Envelhecimento , Longevidade , Humanos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...